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Temperature factors and thermodynamic properties of crystals can be related easily and practically by 
use of the quasi-harmonic description of lattice vibrations. The explicit introduction of particular forms 
of frequency distributions or force-constant models is not required. 

For cubic crystals containing one type of atom, temperature factors can usually be obtained more 
accurately from thermodynamic data than from scattering measurements. For more complicated struc- 
tures containing different kinds of atoms, the thermodynamic data are related to a linear combination 
of temperature factors. 

1. Introduction 

Temperature factors enter explicitly into all structure 
analyses made by diffraction methods. They are com- 
monly defined (Lipson & Cochran, 1953) through the 
scattering factor 

f=fo exp ( -  B sin 2 0/22), (1.1) 

where f0 is the atomic scattering factor, B the temper- 
ature factor, 0 the Bragg angle and 2 the wavelength 
of the incident radiation. Alternatively, B may be ex- 
pressed by 

B = 8 ~ 2 u  2 , ( 1 . 2 )  

where u E is the mean square displacement, perpendic- 
ular to the reflecting plane, of an atom due to its vibra- 
tional motion. Physically, the lattice vibrations mod- 
ify local electron density distributions, reducing the 
Fourier components which give rise to Bragg reflexions 
and adding a continuous spectrum of Fourier com- 
ponents which do not have the periodicity of the crystal 
lattice. The reduction of the Bragg intensities depends 
upon the amplitude of the vibrations [equation (1.2)] 
and so is temperature dependent. Temperature factors 
are sometimes estimated empirically (Lipson & Coch- 
ran, 1953) but more often they are evaluated as param- 
eters of a structure analysis. 

In more general terms, the temperature dependence 
of Bragg reflexions is called the Debye-Waller effect 
(Debye, 1914; Waller, 1925). It is convenient for our 
purposes to discuss the Debye-Waller factor, M, which 
is related to B by 

M =  B sin E 0/t] ,  2 . (1.3) 

In particular we wish to show how M may be related 
to thermodynamic quantities with the use of quasi- 
harmonic lattice theory. In so doing, we also describe 

the information about lattice vibrations which is ob- 
tainable from experimental studies of the Debye-Wal- 
ler effect. The quasi-harmonic theory provides a com- 
pletely general and practical way of correlating the dif- 
ferent kinds of experimental information without the 
introduction of detailed models. This point has already 
been made in part by Blackman (1956), and our paper 
may be taken as an extension of his. 

2. The quasi-harmonic theory 

2.1 The Debye- Waller factors 
The rigorous theory of the Debye-Waller effect has 

been discussed in detail by other authors (e.g. James, 
1948). In this section we shall merely state the results 
that we need for the present paper. Referring to Fig. 1, 
we can write for the difference in wave vector between 
reflected and incident radiation 

where 
Q = k r - k i  (2.1) 

IQI-- Q = 2(2~z/2) sin 0.  (2.2) 

In general, there are n different atoms in a primitive 
cell at positions r~ (x= 1, 2, - - -  n) from a primitive 
lattice point. We assume that the scattering by each 
type of atom is determined by a simple atomic scatter- 
ing factor f0~(Q) and that it is unaffected by the vib- 
rations. It can then be shown, for an ideal mosaic 
crystal with no extinction, that the ratio of the inten- 
sities of the scattered radiation from the vibrating (I) 
and non-vibrating (I0) lattice is given by 

12~ fo~ exp ( iQ.  r~) exp ( -  M,~, 0)12 
1 / l o  = ~ = l  

[2~ fox exp ( iQ.  r,~)[ E 
(2.3) 
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The exponentials exp ( -M~,  o) contain the Debye- 
Waller factors, and for a given reflexion Q there is one 
for each atom ~c in a primitive cell. 

If anharmonicity of the lattice vibrations can be 
neglected, M~, Q depends only o n  ( ( U Q  ( /¢ )}2 ) ,  the mean 
square displacement of the atom x in the direction of Q: 

Mx, Q----- 8zr 2 sin 2 0/22 ( { U Q ( / ¢ ) } 2 )  . (2.4) 

An equivalent but more concise expression can be ob- 
tained from equation (2.4) by using equation (2.2): 

M,~,Q=½Q2({UQ(K))2)=½({Q. u(K)}z), (2.5) 

while its physical significance can be seen most clearly 
from a third expression obtained by using the Bragg 
relation n2 = 2d sin 0: 

M~,o=2n2n2({uoQc)/d}2) . (2.6) 

Thus, according to the quasi-harmonic theory, the 
Debye-Waller factors depend only on the ratio of the 
root mean square amplitudes of the atomic vibrations 
to the spacing of the reflecting planes; conversely, 
measurements of the temperature dependence of inten- 
sities give information about the amplitudes. 

2.2 The Debye- Waller frequency integral 
If the numbers 1, 2, 3 are used to denote any three 

mutually perpendicular directions in a crystal, it fol- 
lows from harmonic lattice theory (Blackman, 1956) 
that 

1 n 

?1  m'c({ux(K))z+ {uz(tc)}2 + {u3(tc)} z) 
3n = 

- 3 .4 / .  c° 2 d o ) .  ( 2 . 7 )  

Here, ~ is the total number of atoms in the crystal, 
G(co)dco is the number of normal modes of vibration 
with frequencies between co and co +dco, corn is the max- 
imum frequency in the distribution G(co), and e(co) is 
the mean energy of a normal mode of angular frequency 
co(=2nv): 

e(co)=½hco+hco/{exp (hco/kT)- 1}. (2.8) 

We call the quantity on the right-hand side of equation 
(2.7) the Debye-Waller frequency integral and denote it 
by the symbol X(T). 

If M,,t, Mr,z, Mx,3 are the Debye-Waller factors for 
reflexlons from planes perpendicular to the three dir- 
ections, then from equations (2.5) and (2.7) we have, 
with an obvious notation (Blackman, 1956): 

n 2 ..-~lm" [ M,~,I M,c ,2  M,~,3 
3n _ \ Q~ + ~ + QS ] = X(T) " (2.9) 

The importance of equation (2.9) is that, whereas the 
left-hand side relates to the Debye-Waller effect, X(T) 
depends only on the lattice frequency distribution 
G(co). We shall show in § 3 that X(T) can be derived 
from experimental thermodynamic data without a 
knowledge of the detailed shape of G(co). 

2.3 Simplification for cubic symmetry 
For the important class of crystals of cubic sym- 

metry, ({uo(x)} 2) is independent of the direction of 
Q; thus 

Mx, 1 = M x ,  2 = M x ,  3 = M,~, (2.10) 

and equation (2.9) simplifies to 

2 ~ m,~M,~ 
- X ( T ) .  ( 2 . 1 1 )  

/'/ ~c=l Q2 

The crystals may differ in the numbers and kinds of 
atom in the primitive cell, and we shall consider three 
important cases: 

(a) Monatomic, n = 1 (e.g. copper, aluminum, etc.) 
Since there is only one type of atom, equation (2.11) 

becomes simply 
2mM/Q2= X(T) , (2.12) 

and the single Debye-Waller factor M is completely 
determined by the average over the frequency distrib- 
ution, X(T). 

(b) Monatomic, n =2 (e.g. diamond, silicon, etc.) 
Although diamond has two atoms in each primitive 

cell, they are symmetrically equivalent to each other. 
Thus again there is only one independent Debye-Wal- 
ler factor: 

M I = M 2 = M .  (2.13) 

(c) Diatomic, n = 2 (e.g. sodium chloride, 
zinc sulphide, etc.) 
Here there are two types of atom with different mas- 

ses (ml, mE), atomic scattering factors (jq, fz) and De- 
bye-Waller factors (M1, ME). Each Bragg reflexion 
now falls into one of two categories: the reflexions 
from the two different types of atom are either in phase 
(summation spectra) or out of phase (difference spec- 
tra). The intensity ratios [cf. equation (2.3)] are there- 
fore given by 

(I/Io)sum = [ f lexp( -  MO+ f2exp( -  M2)[2 
IJq +AI ~ - - ,  (2.14) 

and 

l fl exp ( -  Mx)-f2 exp ( -  M2)I 2 (I/Io)aiff. = . . . . . . . . . . . .  ( 2 . 1 5 )  [A -A[ 2 

In order to obtain M1 and ME separately, information 
in addition to that contained in X(T) is required. This 
might for example be obtained from the ratio of the 
atomic scattering factors, jq/J~. 

Reflecting Plane 

Fig. 1. Simplified wave vector diagram. 
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3.  D e t e r m i n a t i o n  o f  X(T) 
3.1 Preliminary remarks 

We now consider the Debye-Waller frequency in- 
tegral and show how it is related to quantities which 
can also be derived from analyses of thermodynamic 
data. From experimental heat capacities it is possible 
to obtain (Barron, Berg & Morrison, 1957; Tosi & 
Fumi, 1963) moments co n of the frequency distribution 
defined by 

- -  1 I ~ m  
09n = _ _  09nG(09)d09 (3.1) 

3~V" 

for n > - 3 . *  Negative moments, e.g. 09-2 or 09-1, can 
be obtained to about the same accuracy (often ~ 0-2~) 
as the primary experimental data, but higher moments 
(up to 09 6 ) rather less accurately. In addition, the co- 
efficients in the low frequency expansion for G(09) 
(Blackman, 1937) 

G(09) = cz109 2 .31_ 0c2094 .~_ ~3096 .qL. . .  (3.2) 

may be found. Our aim, therefore, is to express X(T) 
in terms of moments and the coefficients in equation 
(3.2). 

3.2 At high temperatures 
At high enough temperatures and neglecting an- 

harmonic effects, s(09)= kT for each normal mode and 
X(T) then depends only on o9 -2 (Blackman, 1956): 

k T f~" G(09)d09-kT09-z (3.3) 
X(T) = ~ 092 " 

The approach to this high temperature limit can be 
described by a power series in T -2 similar to the well- 
known Thirring expansion for the heat capacity (Bar- 
ron, Berg & Morrison, 1957). For the energy, we have 
(Blackman, 1955) 

e(09)=kT 1 + ~r B2n k-T (3.4) 
n= 1 ( 2 n )  ! ' 

and so X(T) becomes 

r IB2[ / \ h  2 IBal h 4 
X(T) = kT [~-2 + ~ t--k-T) 

where the Bz. are the Bernoulli numbers 

(B2 = ~, 94  = 1 B6 = 4__~. ' . )  - -  -~-~,  • • • 

This series is absolutely convergent over a wide tem- 
perature range (T>hcom/27~k). 

The majority of the measurements of X-ray inten- 
sities are made in the temperature region where equ- 
ation (3.5) is valid. Therefore, in principle, the results 

• We are here sliding over the problem of taking explicit 
account of anharmonic contributions, but this is discussed in 
the references cited. 

may be analysed to yield co -2 and estimates of the first 
few even moments. In practice, it is found (Barron, 
Leadbetter, Morrison & Salter, 1 963) that experimental 
incompleteness and uncertainty limit the determination 
to 09 -2 (accurate at best to about 1 ~) ,  but even this 
may be useful if other kinds of data are not available. 
On the other hand, good thermodynamic data will give 
fuller and more accurate information about the mom- 
ents. The use of the expansion (3.5) will then be to 
evaluate X( T). 

3.3 At low temperatures 
At T = 0  °K, only the zero point energy contributes 

to e(09) [equation (2.8)]; X(T) then depends only on 
09-1. 

1 l~m h09 
X(0) = ~ ~ a(09)d09= ½h09 -1 . (3.6) 

Separating the contribution of the zero point energy 
from that of the thermal energy, we thus obtain for 
T> 0 °K 

X(T) = ½h09 -1 

1 I °'" h G(09)d09. (3.7) 
+ ~ 0 09{exp (h09/kT)- 1 } 

At low temperatures only the low frequency modes 
contribute appreciably to the integral in equation (3.7), 
so that the upper limit of integration may be changed 
to infinity. Substituting the low frequency expansion 
[equation (3.2)], we obtain 

X(T)--  ½h(D -1 -}-" V,./~:. n =  1 ~ IO=nl \ n l  (3.8) 

Thus X(T) now depends only on co-1 and on the 
coefficients ~ ,  0~2, 0~ 3 . . . .  The corresponding expansion 
for the heat capacity converges usefully in the approx- 
imate range T<h09m/25k (Barron & Morrison, 1957) 
and a roughly similar range of convergence can be ex- 
pected for equation (3.8). 

The experimental accuracy of X-ray diffraction 
measurements at low temperatures is such that the 
results will give at best an estimate of 09-1 only. Unless 
much more accurate measurements can be made in the 
future, the main use of equation (3.8) will be for the 
computation of X(T) with values of o9 -1, cq, ~z, . . .  
obtained from thermodynamic data. 

3.4 At intermediate temperatures 
There remains the matter of estimating X(T) in the 

intermediate temperature range. The necessary inform- 
ation is contained in the thermodynamic data; for ex- 
ample, Cv determines the integral frequency distrib- 

ution G(09)&o quite closely (Barron & Morrison, 
0 

1960). A formal relation between X(T) and Cv has 
been derived by Potapov (1963), but it is not made 
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clear whether it can be adapted for practical use. In 
any case, it is much less laborious to interpolate be- 
tween the high and low temperature expansions and 
this can be done most easily by using characteristic 
temperatures. The details will be given in §§ 4.2 and 4.4. 

4. Equivalent Debye characteristic temperatures 

4.1 Definitions 
For actual computations, it is convenient to repres- 

ent measured properties (e.g. heat capacity, ratios of 
intensities of Bragg reflexions etc.) by means of equiv- 
alent Debye characteristic temperatures. Their merit 
is that they provide a sensitive way of showing the 
temperature dependence of the vibrational properties 
of different crystals, yet the variation in their numerical 
values stays well within an order of magnitude. Fre- 
quently, a 'O' is obtained from an experimental Debye- 
Waller measurement and then compared with a 'O' 
obtained from heat capacity data to see if it 'agrees'. 
Such a comparison is of little or no value because 
actual frequency distributions differ from Debye's and 
because the different experimental properties corres- 
pond to different averages over the frequency distrib- 
ution. 

The choice of the Debye distribution as a reference 
is not arbitrary; it is the simplest distribution which 
has the two properties common to all crystal distrib- 
utions: an co2 dependence in the limit of vanishingly 
small frequencies, and the number of modes, 3~A/'. 
When characteristic temperatures are derived from 
different crystal properties, it is important to distin- 
guish between them (Blackman, 1955). This may be 
done using a superscript to indicate the property to 
which a given O refers: 0 c for the heat capacity, 0 s 
for the entropy, O u for the Debye-Waller frequency 
integral, etc. The definition of each characteristic tem- 
perature is precise and involves no assumptions: 
OP(T) represents the observed value of a vibrational 
property P at the temperature T. Subscripts are used 
to indicate limiting values at low and high temperatures, 
e.g. O~ and O~. 

The derivation of OC(T) from heat capacity data is 
straightforward. Extensive tables are available (Beattie, 
1926; Gigu~re & Boisvert, 1962) which give Cv as a 
function of O/T. It is only necessary to find in the 
tables the value of O/T corresponding to the observed 
value of Cv and then to multiply it by T to get Oe(T). 
Since the tables refer to 3NA vibrations, where NA is 
Avogadro's number, the experimental molar heat cap- 
acities first have to be divided by a factor (e.g. 2 for 
NaC1, 3 for CaF2 etc.) when there are more than 3NA 
modes per mole. 

In a similar way we can determine OM(T) when 
X-ray or other measurements yield numerical values of 
X(T). For a Debye distribution 

kTx 2 + x  o e-~Zl-1 dy ' (4.1) 

where x =ticom/kT= O/T and y =hco/kT. A short table 

of the function 1 Ix Y dy is given by Debye 
2"- ~0 e )j-211 

(1914), and one of the quantity in brackets in equation 
(4.1) by James (1948; page 219). An extended table for 
the latter has recently become available (Benson & 
Gill, 1965). 

In several places (e.g. James, 1948, page 220; Bald- 
win & Tompson, 1964), it is remarked that O M should 
always exceed 0 c by perhaps a few per cent. The 
remark is based on an approximate argument pres- 
ented by Zener & Bilinsky (1936) in which the Debye 
model is used explicitly. However, the general con- 
clusion is not valid for reasons which will become ap- 
parent from subsequent discussion. 

4.2 The coo(n) curve and limiting Debye temperatures 

The moments con occur frequently in the theory of 
lattice vibrations, and it is convenient to have some 
way of comparing them with one another. For this 
purpose, the Debye distribution is again a useful refer- 
ence. We define the quantity coD(n) as the cut-off 
frequency of a Debye distribution which has the same 
nth moment con as the actual frequency distribution of 
the crystal, so that (Barron, Berg & Morrison, 1957)* 

f n + 3 - - I  1In COD(n) = / ~  con~ , (n> - 3 ,  n=¢-O). (4.2) 

A graph of co~(n) against n is then a property of the 
frequency distribution.]" Such graphs have been det- 
ermined from the heat capacities of a number of cubic 
crystals; two examples whose shapes differ consider- 
ably are shown in Fig. 2. 

While the coD(n) curves correlate the co n with each 
other, they also allow one to see easily the relative pos- 

* Some authors (e.g. Feldman & Horton, 1965) use the 
corresponding Debye temperatures: O(n)= hcoD(n)/k. 

? Obviously, coD(n) would be a constant for a Debye distri- 
bution. 

5"5 

b 

5 

3 
x4. 5 
o 
, r -  

i / e rman ium 

z~ 

6 
/7 

Fig. 2, The function r~D(n) against il for germanium and copper, 
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itions of different limiting characteristic temperatures 
at low and at high temperatures. It has been shown 
(Barron et al., 1957) that 

kOCo=hcoD(-3), kOC=hco#(2), kOS=hco#(O) , (4.3) 

where coD(--3) and coD(0) can be defined as the limits 
when n- -~- -3  and n ~  0 of the right-hand side of 
equation (4.2). In a similar way, the limits for 0 M are 

kO~=hcoD(- 1) and kO~=hcoD(-2). (4.4) 

Referring to the curves in Fig. 2, we find that for cop- 
per O ~ > O  c by about 1 ~  while for germanium 
O c > O~ by about 25 ~o. 

4.3 Expansions for 0 M 
The high and low temperature expansions for X(T) 

[equations (3.5) and (3.8)] may be written in terms of 
characteristic temperatures. For example, if the right 
hand side of equation (3.8) is equated to the corres- 
ponding expression for a Debye distribution with 
maximum frequency corn: 

XD(T) -- 3h 3h ( 2 ~ T )  2 
- 4co-----m + -4-~-m~ IB21 - -  , (4.5) 

we find 

OM(T) = O~ [1+6"580{1--  [ 0 ~  3} ], 
(4.6) 

where numerical values of the constants have been in- 
serted. In a similar way, we obtain for the high tem- 
perature region (T> hcom/2~k) : 

OM(T) = O M 1 + 7200 [ \  O~ m/ - 1 + . . .  

(4.7) 

4.4 Remarks on the temperature dependence of OM(T) 
General knowledge of the con(n) curves of different 

crystals can be used to arrive at some fairly definite 

c- 

O 0"2 0"4 0"6 0"8 1"0 
('~/('~tD 

Fig. 3. The frequency distribution for the theoretical example 
(§4.5). 

conclusions about the probable temperature depend- 
ence of OM(T). In the first place, COD(n) usually has a 
minimum between n = 0 and n = - 3, and often between 
n - - - 1  and n = - 2  (e.g. germanium, Fig. 2). This 
means that O~ and O~ [equation (4.4)] are unlikely 
to differ by more than about 1 0 y  o; usually they will 
differ by much less. 

In the second place, there is no term in T -2 in 
equation (4.7), so that we may expect OM(T) to remain 
approximately constant down to lower temperatures 
than does OC(T). If we take c M O~/O~ ~ 1"25 (a large 
value, as in the example of germanium), the second 
term of equation (4.7) contributes less than 1~o in the 
region T> OC/3. It thus appears that the typical var- 
iation of OM(T) is likely to be much less than that of 
OC(T) and that even a crude assumption that OM(T) 
is a constant may often be quite a good approximation. 
If required, the detailed behaviour of OM(T) between 
the ranges of convergence of equations (4.6) and (4.7) 
can be determined using Pad6 approximants (Salter, 
1965). 

These conclusions apply only to a typical vibrational 
distribution. They do not necessarily apply to distrib- 
utions which have large parts widely separated in 
frequency. Such distributions are found in layer struct- 
ures, where frequencies for motion perpendicular to 
the planes are lower than for motion within the planes. 
Molecular crystals provide another example: the fre- 
quencies of internal vibrations are commonly much 
higher than those of ' translation' or 'libration'. For 
such crystals, it will usually be more appropriate to 
consider the different kinds of frequencies separately 
rather than to lump them together in a single X(T) 
(Leadbetter, 1965). 

4.5 A theoretical example 

To illustrate the deductions made above, we com- 
pute characteristic temperatures for a simple model 
distribution in which -}Jg" normal modes are in a 
Debye distribution with cut-off corn and ¼,f" in a 
monochromatic peak at co=0"3com (Fig. 3). This dis- 
tribution has most of the properties of a typical dis- 
tribution (but no dispersion at low frequencies) and 
is amenable to computation. The coo(n) and OM(T) 
curves are remarkably similar to those estimated by 
Feldman & Horton (1963) for white tin. 

The CoD(n) curve is shown in Fig. 4. From it, we con- 
clude that there should be a marked variation in 
OC(T), with O c > O  c, but very little variation in 
OM(T). This is confirmed by the computed O(T) curves 
shown in Fig. 5. The very flat initial portion of the 
OC(T) curve is due to the absence of dispersion; for 
real crystals, OC(T) and OM(T) will usually show par- 
abolic temperature dependences in opposite directions 
at low temperatures. A rather similar illustration of the 
variation of OM(T) and OC(T) with temperature is 
provided by curves calculated by Batterman & Chip- 
man (1962) for germanium from a frequency distrib- 

AC20-9  
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ution derived by Phillips (1959). Both of these examples 
show that the simple generalization of Zener & Bilinsky 
(1936) that O~¢(T)> OC(T) cannot be maintained. 

5. Practical computations 

5.1 The volume dependence of OM(T) 
The results we have discussed so far apply only to 

a fixed volume, whereas in practice the volume of a 
crystal changes with temperature. We can allow for 
thermal expansion and also calculate the pressure 
dependence of the vibrational properties, if we know 
the volume dependence of the frequency distribution. 
Paskin (1957) has suggested the use of the Grfineisen 
parameter 7, which he defines as - d  In O/d In V; but it 
is necessary to be more precise here because O is not 
unique. Since the total volume change due to thermal 
expansion is usually very small below 0/3, it will 
normally suffice to know the volume dependence of 
O~. From the second part of equation (4.4) we obtain 

d In coD(- 2) d In O~ 
7 ( - 2 ) -  - - d l n  V - d ln  V ' (5.1) 

where 7(n) is defined by (Barron, 1955) 

1 d In co n 
7(n) - n d In V (5.2) 

Therefore to bring values of OM(T) to the basis of a 
single volume V0, we may use 

O~Z(Vo) ( V ) ~-2) 
O ~ ( V  ) - ~ (5.3) 

It is shown elsewhere (Barron, Leadbetter & Morri- 
son, 1964) that 7(n) curves can be calculated from the 
thermal expansion in much the same way that coo(n) 
curves can be calculated from the heat capacity. In 
particular, 7 ( - 1 )  and 7 ( - 2 )  can be obtained to within 
a few per cent if accurate thermal expansion data are 
available down to low temperatures. 

5.2 The inverse second moment 
From the point of view of coherent ~cattering meas- 

urements, the most useful quantity which can be der- 
ived from thermodynamic results is the inverse second 
moment, co-z. This is because numerical values of 
X(T) or OM(T) will usually be wanted in the high 
temperature region. We therefore outline a simple gra- 

phical procedure for obtaining co -z from heat capacity 
data. 

The general relation between the harmonic heat 
capacity and the negative moments is (Barron, Berg & 
Morrison, 1957) 

3¢Ck o z n dr = F(n + 1)((n)co 1-n 

1 1 ,~ 1)~+ 1 Ig2sl 
(n-- 1) T n-1 + ,=l ( -  (2s) V. 

(2s- 1) co2s ( h ~ 2s 
× ( 2 s + n - 1 )  T 2s+n-x \ k ]  ' (5"4) 

1'1 "I 

1"0 

3 0"9 
g 

3 0"8 

t~ D(OO)/t.Om 

f 

0"7 

Fig. 4. The function top(n) against n for the theoretical example 
(§4.5). 

1"0 

0"9 
Q) 
I..... 
• 0"8 

0"7 

I I 0"1 0"2 ()'3 0!4 
T/em 

Fig. 5. The temperature dependence of the characteristic tem- 
peratures OM(T) and OC(T) for the theoretical example. 
(Om= ho~m/k). 

2"5 
A 
e,l 

¢) 

2"0 
I -  

I -  

~ @  1'5 

x l'C 
0 

0"5 

\ ~ o -  \ 
\ 
\ 

o i'o 
I04/T 2 (deg -2) 

Fig. 6. The graphical determination of the inverse second mo- 
ment of the frequency distribution of germanium. 
. . . .  line of limiting slope. 
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where 1 < n < 4, F(n + 1) is the gamma function and ((n) 
the Riemann zeta function (both tabulated by Jahnke 
& Emde, 1945). With n = 3, the inverse second moment 
is therefore given by 

3,,Uk 0 ~ dr = 7.212 0)-2 2T 2 

+ 4--ff-T~- - . . .  (5.5) 

If the integral on the left-hand side of equation (5.5) is 
plotted against 1/T 2, the graph should be a curve with 
an intercept of 7.212 0) .2 (h/k) -2 and limiting slope of 
-½  at 1/T2=0. Fig.6 shows such a graph for data for 
germanium in the region 3 0 ° < T < 1 8 0 ° K  (i.e. 12> 
OC/T>2), giving 0~=297°K.  If required, 0)-1 and 0y  
can be obtained by taking n = 2 in equation (5.4); the 
initial coefficient ((2)F(3)= 3.290. 

The example of germanium is a particularly favour- 
able one because the expansivity of the crystal is small 
and because there is no ambiguity about the number 
of vibrations [i.e. about ~4 r in equation (5.5)]. Thus, 
in order to obtain 0) .2 to within a few tenths of a 
percent, either C~ or C at a fixed volume may be used 
in the plot such as Fig. 6. For other substances, e.g. 
for molecular crystals, the accuracy with which 0)-2 can 
be determined will be less but, as a rough rule, should 
not usually be worse than about 2%0 even when only 
crude corrections for expansivity can be made. 

6. Constant volume anharmonic effects 

Throughout this paper, the only anharmonic effects 
considered have been those due to thermal expansion. 
There are additional anharmonic corrections to the 
temperature factor that occur even when the crystal is 
held at constant volume (Maradudin & Flynn, 1963), but 
these cannot be estimated from purely thermodynamic 
measurements without additional assumptions. They 
will in general be of the same order of magnitude (but 
not necessarily of the same sign) as the corrections due 
to thermal expansion. They will not therefore affect 
seriously the results and conclusions of this paper ex- 
cept at high temperatures, where accurate measure- 

ments of the temperature factor can in principle give 
information about the lattice vibrations unobtainable 
from thermodynamic properties. 
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